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Why satellites need propulsion in space?
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Space propulsion is used for o . = I I | |

* Atmospheric drag compensation, orbital transfer, collision 1900 1| —RocketBodies |

* Constellation deployment il
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Limitations o

 Not common for very small satellites (<50 kg) “

* High cost and integration problems (Kessler syndrome of collisional cascading)

* Restricted resources (power, size, mass, thermal management) *image credit: NASA

* Harsh environment (temperature, radiation, vacuum, loads)

Importance
e Majority of space junk can be avoided if all satellites have propulsion

I Sustainable use of space requires propulsion




Propulsion basics

* Thrust: T = my, X Vpy

% T .
Iy, = = =- — measure of efficiency
g  Tpg
Typical V,,

 for cold gas - < 500 m/s
* For chemical -<4 km/s

* For EP —up to 50 km/s




Hall effect thruster Field emission thruster
(discharge in ExB field) (no plasma)

Types of electric ) ‘

propulsion systems

Capillary emitter

e Gridded ion thruster with different = -
ionization techniques (RF, MW, electron
beam, DC hollow cathode or discharge N T

with electron bombardment)

* Hall effect thruster Gridded ion thruster
: . : : ious plasma disch d
* FEEP —field emission electric propulsion (various plasma discharges used)
thruster Grids
* PPT — pulsed plasma thruster
_
* Variety of plasma expansion systems, 7 Plasma | .
N AN

first flight last year

@

Read more: D. Goebel and I. Katz, Fundamentals of Electric Propulsion: lon and Hall Thrusters, Wiley, 2011.



Starlink

constellation

T
L
I
| -
¥
lo]0]
C
)
>
(V)]
Q
=
o
o+
(40)
(V)]
(%]
o
o
o
—
=
Q
L
[ J

* New generation on Ar HET

Main drivers:

* cost

e convenience
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Propellants for
Electric Propulsion

Low ionization potential + low storage complexity \(4
- Caesium: 3.89 eV, 132.9 u, 28.4°C melting

PEL
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MAIN VAPORIZER—

- Mercury: 10.4 eV, 200.59 u, -38.3°C melting s
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Currently “conventiona
Inert + heavy
e TV cr Mn Fe Co Ni Cu “Ge | As \ Xenon: 12.1 eV, 131.2 u, gas (>200bar storage). “Safe” but

il HHHEHE | | expensive, very rare, storage and delivery problems
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- Krypton: 13.99 eV, 84.8 u, gas (>200bar storage). Low cost, drawbacks as with
Xenon. Used only by Starlink since 2019, but represents >50% of all EP.

- Argon: 15.76 eV, 39.9 u, gas (>200 bar). Very low cost, low efficiency. Starlink.

- Indium: Solid metal. Not suitable for plasma-based EP. Validated by Fotec and
exploited only by Enpulsion (100+ systems).

- lodine: 10.45 eV, 126.9 u, solid (<0.1 bar at room temp). Research started
1960s. Validated and exploited only by ThrustMe (5+ systems, since 2019).
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lodine for EP

FUTURE OF SPACE PROPULSION

lodine advantages

= Same or lower ion energy cost as with Xe
= Pressure <<1 Bar, solid
= High storage density, up to 4.9 g/cm™

= Can enable propulsion for smallest sats

=  Cost: the cheapest propellant

Main challenges

= Halogen: corrosion and toxicity

Lack of fundamental data

Various engineering problems

Vapor pressure of iodine (log(Pa))
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lodine for EP

FUTURE OF SPACE PROPULSION

Property lvalue |
4.93 g/cm?

| Atomicmass  [RPECEAUL
113.7C

62.4 Ki/mol
54.44 )/(mol-K)
0.449 W/(mK)
10.45 eV

Electronegativity 2.66

Missing iodine data

=  Corrosion
= Basic thermal properties (vapour)
®  Reaction cross-sections

=  Some atomic properties

Internal studies

= Corrosion: 20+ materials tested and analysed

= Secondary electron emission yields 11



lod

1970s 1980s 1990s 2000s 2010s 2020s

1960s

ne EP history

T~

=

First space flight of iodine ion thruster [7]
First space flight of iodine cold gas thruster [6]

Numerous experimental prototypes,
theoretical and experimental studies with
iodine EPs

Study about replacement of Xe directly with
iodine in the existing GIT and HET [5]

lodine plasma torch study [4

lodine ion source deveIOfment[B]

lodine colloid thruster tested and characterized [2

lodine ion thruster proposed and studied [1]

[1] Bussi, G. and Filippi, F., "Propulsion electrostatique par ions postifs et negatifs" Institute
di Machine E. Motori per Aeromobile, Turin, Pubblicazione 26 (July 1963)*

[2] E. Cohen And R. Kemp “Pulsed and alternating current colloid thruster studies”, 8th
Aerospace Sciences Meeting 1970, West Germany

[3] Harry J King “Advanced Ion Source” Final report N74-20448 , Hughes Research Labs
1973

[4] H Liebl and W W Harrison “Study of an iodine discharge in a duoplasmatron”
International Journal of Mass Spectromctry and lon Physics, 22 (1976) 237-246

[5] R A Dressler, Y-H Chiu, D J Levandier “Propellant Alternatives for Ion and Hall Effect
Thrusters”, AIAA 2000-0602, 2000.

[6] Martinez J M et al. “Development, Qualification and First Flight Data of the lodine Based
Cold Gas Thruster for CubeSats” In 5th IAA Conference on University Satellite Missions and
CubeSat Workshop, 2020

[7] Rafalskyi D et al. "In-orbit demonstration of an iodine electric propulsion system." Nature
Vol 599 No 7885: 411-415, 2021

* Hardly accessible reference, brief review here: William J. Guman “Electric Propulsion Activities outside of
the United States” J. Spacecraft vol. 4, No. 11, pp.1424-1430 (1967)

12



Cr surface after exposure to I,
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lodine for EP

FUTURE OF SPACE PROPULSION

Property lvalue |
4.93 g/cm?

126.9 g/mol

Melting point 113.7°C

Enthalpy of sublimation 62.4 KJ/mol
Heat capacity (solid, 252C) 54.44 J/(mol-K)

Corrosion testing results:

Thermal conductivity (solid) 0.449 W/(m-K) |2 mapping
10.45 eV
Electronegativity 2.66

= Material database

= Strong impact of both

Missing iodine data process and environment

= More details: CEAS Space

=  Corrosion
J, 14, 91-107 (2022)

= Basic thermal properties (vapour)

S0um

= Reaction cross-sections Cr mapping

=  Some atomic properties

Internal studies

= Corrosion: 20+ materials tested and analysed

= Secondary electron emission yields 13




lodine for EP: ion source

lodine ion thruster lon thruster = broad beam ion source

Screen grid Accel grid
500-1300V -70V

* RF ICP discharge R dnisnna I I lon beam (X**)
>
e 2-grid ion acceleration X | | >
. . b
* Filament neutralizer = I I >
—| | >
| | =7
e 4 !
| } {1 Filament
L Cathode
,3 ,a Y Supply
RF source
C") C‘) (‘ Cathode bias
= * +/ supply
Screen grid
supply
Accel grid ——
supply B

RF ICP discharge for ionization, double grid system for ion acceleration and filament
cathode for neutralization
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lodine for EP: System architecture

JuU

| Od INe 10N th ruster First to fly iodine ion thruster NPT30-12 architecture: internal schematics (simplified)
/2 Heat flux
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Integrated tank = RF power o |
]
Fully autonomous Lol it ' I
_ _ lodine propellant storage arﬁj“;‘;‘;i: ;23?:2{;& 1
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L
| === =" | XX}
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@ I s e e = e = = = =
@ I |
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lodine for EP: System architecture

NPT30-12: first to fly iodine ion thruster
lodine ion thruster INature, 2021, 599: 411-415

Electronic — Conductive heat flux
subsystems e - -+ Radiative heat flux
— |odine gas flow

Integrated tank

Solid
iodine

=== Total power
- Heating power

Fully autonomous

Embedded intelligence and
power electronics

Power (W)

Thermal management

) 0 2000 4000 6000
Time (s)

N ) \

|+’ |2+’ |2+

Frame T - : Grid set

Plasma

)
g
[/

RF antenna Cathode assembly

Dimensions: 10x10x10 cm



lodine ion thruster

* Integrated tank
e Fully autonomous

 Embedded intelligence and
power electronics

* Thermal management

lodine for EP: System architecture

NPT30-12: first to fly iodine ion thruster



lodine for EP: plasma simulation

Simulation of iodine plasmas: global model coupled to the ICP transformer model

o o 4 I . _ . . . . . . . . . .
IOd Ine Spec|f| C I Unreliable cross-section data: Xe simulation with empiric fits to the iodine case.
30
problems = | oExp.Xe — Modelxe
£ a Exp. |,
‘5 20 -
5 .
Unknown reaction 5 10 e
cross-sections c
S
Plasma-related surface 0 +H—T——T—T—
properties (secondary 0 5 10 15 20
emission, work function) ICP power [W]

New study on | cross-sections: Atoms 2021, 9, 103. https://doi.org/10.3390/atoms9040103

Fundamental properties
(thermal conductivity at

high temperatures) Simulation of ion acceleration: 2D PIC code

8000

=== Child-Langmuir law

Corrosion-related data
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lodine for EP: beam characterization

lon beam mapping
1Review of Scientific Instruments, 2020; 91: 093501

lodine specific

problems Divergence half-angle: 8-15°
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e Very small force, high
precision balance required

e Estimation from the ion
beam parameters requires
precise characterization

lodine for EP: Thrust measurements

Thrust: T = ay /21:1" Ii\/ Ve

Divergence correction: Yy = cosO g,

Composition correction:
a =By +V2 B4 + Y 5 Bre

0.1 mN thrust balance

Thrust, mN (indirect measurement)

Thrust correction factor
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Beam composition correction:
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lodine for EP: Space flight

!Nature, 2021, 599: 411-415
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6843.5 6845 Mean semi-major axis of the Beihangkongshi-1 satellite as a function of time obtained with Space-Track data, GPS
' 0 3'0 BIO 9'0 120 receiver data, and simulated with GMAT. The black line shows predictions from a theoretical model. The arrows and
Ti [mins] labels indlicate different NPT30-12 firing tests.
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Mean semi-major axis calculated from GPS receiver data, and simulated
with GMAT, as a function of time for firing test 1B. The green shaded
region denotes times when the NPT30-12 is on, and the black dash-dot
line shows predictions from a theoretical model.
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Qualification
campaign

e Operational cycles

e Failure handling

* Mechanical shock

* Vibrations

* Thermal-vacuum cycling

 Ambient thermal cycling

lodine for EP: Qualification and launch

System specs
Thrust: 0.4-1.2 mN

Isp: up to 2450 s

Input power (10-36V dc): 35-65 W
Total impulse: up to 5500 Ns
Mass/Volume: 1.3 kg, 10x10x10 cm

Timeline

Development: 2016-2020
Qualifications: (04-06) 2020
Integrated to satellite: 09/2020

Launched to space: 11/2020
Testing: 2020-2021

Lifetime (on ground): 2021-2022
Mass production: 2023




What’s next?

* lodine for high-power Hall thrusters: sustainable satellite services for Earth
* High-power clusters powered by nuclear power: viable exploration of the solar system

* Nuclear propulsion: high speed space travel*

Turbine pump

Liquid

hydrogen

Nuclear reactor

Nozzle —

23

*Image credit: NASA
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